发布询价单
您的位置:首页 > 资讯 > 综合资讯 > 正文

无人机集群技术现状与趋势

2020-08-17 11:50 性质:转载 作者:军鹰智库 来源:军鹰智库
免责声明:无人机网(www.youuav.com)尊重合法版权,反对侵权盗版。(凡是我网所转载之文章,文中所有文字内容和图片视频之知识产权均系原作者和机构所有。文章内容观点,与本网无关。如有需要删除,敬请来电商榷!)
导 语:近年来,无人机集群技术概念的提出及发展,有效解决了单个无人机作业时载荷相对较小,信息感知处理能力相对较弱的不足。无人机集群技术的研究与应用已...

导  语:近年来,无人机集群技术概念的提出及发展,有效解决了单个无人机作业时载荷相对较小,信息感知处理能力相对较弱的不足。无人机集群技术的研究与应用已成为无人机技术发展的一个重要方向,无人机集群不但能通过单机间的密切协作, 有效提升载荷能力和信息处理能力,并且无人机集群具有很高的“自愈”能力和很强的鲁棒性。本文主要介绍了无人机集群技术的相关概念、国内外无人机集群技术研究现状、差异以及无人机集群发展的关键技术和未来无人机集群技术发展趋势,为开展无人机集群的研究提供理论基础。

0  引 言

集群概念源于生物学研究。在自然界中,欧椋鸟群、鸽群、雁群、蚁群、蜂群、狼群等大量个体聚集时往往能够形成协调一致、令人震撼的集群运动场景。法国生物学家Pierre Paul Grasse基于白蚁筑巢行为,首次提出了生物集群的概念,并开始了智能集群的研究。典型生物集群行为如图1所示。

图1 典型生物集群行为

单无人机的应用,由于受自身条件的限制,面对应用环境的日益复杂以及任务多样,颇显局限。在军事应用上,单机易受自身的燃料、质量和尺寸的限制,无法形成持续有力的打击力度;在民用上,受载荷能力、机载传感器以及通信设备的限制,单架无人机不能很好地完成农林植保测绘、抢险救灾等任务;在警用安保上,单架无人机也会因被攻击或自身故障导致任务失败等。为解决单无人机应用的局限性,美国空军科学顾问委员会提出未来无人机的应用将是以集群的方式。

无人机集群是指由一定数量的同类或异类无人机组成,利用信息交互与反馈、激励与响应,实现相互间行为协同,适应动态环境,共同完成特定任务的自主式空中智能系统。

无人机集群不是多无人机间的简单编队,而是通过必要的控制策略使之产生集群协同效应,从而具备执行复杂多变、危险任务的能力。未来,无人机集群协同完成任务将成为无人机产业应用的重要方面。无人机集群既能最大限度地发挥无人机的优势,提高整体的载荷能力和信息感知处理能力,又能避免单无人机执行任务时被攻击或任务效率不高的问题。

1    国内外无人机集群技术研究现状

无人机已被各国广泛用于国防建设和民用领域,随着无人机技术的深入研究,无人机自主集群系统能够通过紧密的协作完成各种复杂多变的任务,并且具备卓越的协调性、智能性和自主性,已成为无人机研究的一个重要方向。无人机集群作战是指一组具备部分自主能力的无人机通过相关的辅助操作,在作战指挥系统监控下,完成作战任务的过程。美国国防部在《无人机系统路线图2005-2030》中指出,到2025年,集群无人机将具备战场认知能力,能够实现完全自组织作战。

1.1 国外无人机集群技术研究现状

1.1.1 无人机集群分层控制研究现状

对无人机集群实施有效的控制是完成各种复杂集群任务的基础。Cook W.J.等人认为,无人机集群任务规划问题属于复杂问题的组合优化,拟从运筹学角度,采用分层控制方法解决此类问题。Boskovic J.D.等人将无人机集群任务规划问题分解为决策层、路径规划层、轨迹生成层和控制层,其中,决策层负责无人机集群系统中的任务规划与分配、避碰和任务评估等;路径规划层负责将任务决策数据转换成航路点,以引导无人机完成任务、规避障碍;轨迹生成层根据无人机姿态信息、环境感知信息生成无人机通过航路点的可飞路径;控制层控制无人机按照生成的轨迹飞行。无人机集群任务规划分层结构如图2所示。

图2 无人机集群任务规划分层结构示意图

Tsourdos A等从多无人机任务协同路径规划的方向将多机协同任务规划分为集群任务规划分配层、协同路径规划层、控制层等三个层次[13]。研究表明,分层控制能够降低无人机集群中任务分配问题的复杂性,提高集群任务分配效率。

1.1.2 无人机集群控制系统研究现状

根据集群控制系统中有无控制中心节点,分为集中式控制与分布式控制系统。集中式控制系统是由控制中心节点完成系统的任务规划和协同工作,多机系统中的无人机只作为任务的执行者。目前,已有多种集中式任务规划的研究方法,如多旅行商问题、车辆路由问题、网络流模型、混合整数线性规划等。其中网络流模型、混合整数线性规划多用于解决多任务时使用。

分布式控制系统中没有控制中心节点,对单机来说在系统中地位是平等的,采用自主管理、协商的方式完成任务。如欧洲信息社会技术计划(IST)开展的异构无人机集群实时协同与控制项目(COMETS)采用的就是异构无人机集群分布式实时控制技术。

1.1.3 无人机集群任务协同算法研究现状

针对无人机集群任务规划复杂问题,Ramirez- Atencia C 提出了一种改进型多目标遗传算法来求解任务规划问题。E.Edison等针对无人机集群系统对执行多任务目标易受时间先后顺序约束的情况,采用图论描述方法,结合时间、资源、路径等多个条件,建立了“协同多任务分配问题”的组合优化模型。该模型能较好的解决多无人机任务协同规划问题,但建立模型后需要采用广度或深度优先搜索算法、Dijktra算法等确定性的图搜索算法,或采用分支定界、动态规划以及遗传算法、粒子群算法、模拟退化算法等启发式随机搜索算法。采用上述算法虽然能找到问题最优解,但是随着问题规模的扩大,寻找最优解的计算量增大。为降低大型问题的计算量,S.J.Rasmussen等提出基于树搜索算法解决无人机集群的任务规划问题。该算法既能快速找到问题最优解,又能避免确定性搜索算法计算量大的缺点。

1.1.4 无人机集群体系结构研究现状

无人机集群的动态性和复杂性特征决定了体系结构复杂多变。在无人机体系结构研究上,大多采用的是层次递进型体系结构,采用递阶型体系结构可降低集群系统复杂性,提高集群系统运行的效率。其代表性研究有:Caloud P等经过研究将无人机集群体系结构分为任务分解、分配、规划和执行控制四层,并建立“GOPHER”体系结构模型。Parker L E基于行为建立ALLIANCE分布式体系结构,该体系结构是具有容错和自适应性的多机协调体系结构。Längle T等为解决多机体系结构协调问题,对多机容错行为和误差纠正的研究建立了KAMARA的分布式体系结构模型。

1.1.5 无人机集群通信网络研究现状

无人机集群通信网络拓扑结构有别于单机与地面站的通信拓扑,是一种立体全方位通信网络拓扑。集群通信网络感知系统不仅是无人机集群通信的基础,还是无人机集群编队重要信息的获取通道。为解决无人机集群通信中的时延、数据丢失、信号衰落问题,Ghazal A等基于谐波叠加方法建立IMT-A信道模型。由于无人机集群系统的应用场景通常在室外环境,为此,Petkovic M等基于室外环境中红外波段光谱的信号传输,以及相关的光天线通信(OWC)技术,建立了无人机的自由空间光通信系统。该系统在一定程度上能够解决通信带宽、数据拥堵、时延等问题,并基于光电信号转换技术,在视距范围内能够满足系统要求,但易受大气低温、海拔和气压的影响。

1.2 国内无人机集群技术研究现状

国内对无人机集群技术的研究起步较晚,但对无人机集群技术任务规划研究比较深入。目前,国内北京航空航天大学、国防科技大学、中国电子科技集团电子科学技术研究院等单位围绕多无人机系统的协同感知与信息共享、路径实时规划、自主编队与编队重构、智能协同决策等技术开展了相关研究。2017年6月,中国电子科技集团成功完成119架小型固定翼无人机集群飞行试验。

1.2.1 无人机集群任务规划研究现状

无人机集群任务是指需要多机协同完成的任务。无人机集群任务规划是指针对不同的任务无人机集群系统选取不同的任务策略,对任务实施分组、规划完成,它具有复杂性、准确性、以及实时性的特点。在进行无人机任务分配时既要保证任务优先级、利益最大化、不同无人机执行任务均衡性,又要尽量减少的任务执行时间、缩短任务执行路径。

Hu X.X等人为解决集群无人机任务分配计算难度,将多无人机任务分配问题分为目标聚类、集群分配和目标分配三个层次,并进行实验,结果显示同等情况下该方法效率更高。岳源等人根据多无人机系统协同的特点,结合路程、通信、雷达传感器能力、无人机自主化水平,建立了无人机集群侦察优势函数,并根据该函数建立目标任务分配模型,运用粒子群算法对多无人机侦察目标进行研究。叶媛媛以多目标为基础,建立多目标整数规划模型,分析了多机系统任务规划问题。龙涛在合同网协议基础上提出一种有限中心的分布式控制系统,用于解决在线实时的任务分配问题。柳林在多机系统研究中,提出基于合同网的NeA-MRTA和CA-MRTA算法,能更好地解决动态分布式任务分配问题。王庆贺等人提出使用改进遗传算法解决多无人机协同过程中目标分配问题,采用特定的进化算子及染色体并利用环境信息,解决了路径约束问题,建立了飞行代价模型。该改进算法改善了遗传算子早熟问题,收敛速度更快。张浩森等人采用蚁群算法,建立目标群简化的数学模型,解决了在目标区域被对方探测的时间和最小的路径优化问题。Yi Wei等提出了一种任务分配和调度的混合控制框架,并将动态数据驱动系统应用于该框架,很好地解决了无人机集群的动态任务规划问题。王国强等设计了一种基于VR-Forces的分布式无人机编队协同的任务规划仿真系统,该系统解决了多无人机编队实验成本和风险高的问题。

1.2.2 无人机集群路径规划研究现状

无人机集群路径规划不仅要保证全局路径最优,完成任务时间最短,还要保证无人机集群在完成任务中单机能够避障、单机间能够避碰。为此,高晓光、宋绍梅等人采用分层方式,将无人机集群的系统航路规划问题分为协同管理层、路径规划层和轨迹控制层等层,能较好地解决航路规划问题。沈延航等对于无人机集群搜索静止的多目标时,根据搜索理论,依据搜索域上回报率的状态图,并利用蒙特卡洛仿真,展开多无人机协同搜索的研究。经研究得知,协同搜索比随机搜索能更好利用无人机资源,提高无人机集群的效率。丁琳等基于Voronoi图,引入协同变量及函数,生成与威胁相关联的航路,并通过集结点得出状态图,使集群无人机都能到达任务目标,共同完成任务。柳长安等通过对多无人机协同侦察路径规划的研究,提出采用无人机执行任务的总时间来衡量路径规划的优劣。该方法将执行侦察任务的有效时间转化为有效侦察飞行距离,以此评价路径规划的优劣。严平等人为解决无人机在未知复杂环境下的多任务航路规划问题,提出多任务航路规划框架。该框架能够实时解决遭遇威胁航路规划问题,以避免碰撞造成无人机损毁。赵敏等人为达到减少无人机集群完成任务总时间和尽量缩短各无人机的航程,最大限度发挥无人机集群效能的目的,提出了启发式的任务和航路综合规划方法。该方法能够提高无人机集群的效率并能降低集群无人机的动力消耗。周欢等人为解决集群无人机的规避问题,弥补大规模集群系统控制的缺点,提出了基于规则的无人机集群系统飞行与规避自主协同控制方法。

1.2.3 无人机集群信息通信研究现状

无人机集群能否达到预定的作战效能,关键在于信息的获取与传递,无人机信息通信高效运作是取得战场信息权的关键。杨江华以蚂蚁觅食行为作为理论模型,对蚁群算法进行研究,提出了以信息素视图的无人机协同方法,提高了无人机集群的鲁棒性,降低了无人机集群通信问题对集群系统的干扰。曹菊红等人开发了基于智能的多无人机系统控制智能指挥系统,并通过专用通信实时共享信息,提高了无人机自主决策攻击能力。周绍磊等针对多无人机间通信拓扑可能发生变化的情况,基于一致性方法设计了编队控制器,解决了通信拓扑改变下的无人机集群轨迹控制与时变编队控制问题。Liu Liu等基于IMT-A信道模型非平稳衰落特性,建立随机宽带动态信道仿真模型,但硬件难以实现。夏进等建立改进型的SOS信道模型,实现了平稳和非平稳衰落信道的模拟,保证了通信信号的连续性,切换步骤简单,易于实现。

1.2.4 无人机集群编队队形研究现状

合理的无人机编队队形既能保证无人机集群在安全条件下快速完成集群任务,又能节省无人机的动力。Zhou Z W等基于对雁群的观察和研究,讨论了无人机编队飞行与雁群飞行间的仿生理论,提出了仿雁群飞行方式的多无人机紧密编队与控制方法理论。该方法能有效增加无人机编队飞行的稳定性,并且能减少集群无人机能量消耗。叶圣涛等人针对无人机集群自主编队中的算法复杂、信息交互量大的问题,提出了基于智能突现下的分布式无人机集群编队控制策略,建立了集群无人机模型,能够使无人机在复杂条件下形成稳定的多机编队,但在该研究中没有考虑通信延迟、数据丢包和通信噪声的问题。井田等人针对传统无人机集群在侦查中难以自适应调整以匹配不同侦察环境的问题,提出基于区域信息熵的“数字草皮”及其植物量变化模型,并设计了目标区域—无人机集群持续侦察体系中的规模控制方法。该方法能在复杂的任务背景下,提高无人机集群编队的可重构性和柔性。

陈杰敏等基于主从式编队与通信拓扑理论,建立了二阶一致性编队控制系统,保证了无人机编队的稳定飞行。

1.2.5 无人机集群控制策略研究现状

无人机集群控制策略是无人机集群的基础,能够解决不同类型无人机在集群编队、队形保持与重构等相关集群问题。李欣等人针对控制对象的不确定性、目标任务的复杂多变提出了集群智能控制的概念。

段海滨等基于生物群集和无人机集群相似性出发,分析了二者自主控制的对应关系,并探讨了仿生物群集的无人机集群自主控制中的核心问题。罗德林等人为提高大规模无人机集群对抗策略的有效性,提出将多agent系统应用到无人机集群系统中,将系统中单机视为独立的agent,建立无人机独立的单机行为集。景晓年等为解决无人机集群的运动控制问题,基于无人机的避碰、聚集和速度匹配规则,提出一种基于规则的运动控制方法,并根据规则建立了集群动力学模型和运动控制模型。朱创创等人基于分层控制和封装的思想,将无人机控制系统分为执行层和决策层。应用领导—跟随协同编队控制算法,搭建了分布式控制的无人机集群编队控制演示验证系统。

上一页12

网友评论
文明上网,理性发言,拒绝广告

相关资讯

推荐图文

关注官方微信

手机扫码看新闻