发布询价单
您的位置:首页 > 资讯 > 国际资讯 > 正文

绷紧肌肉就能操控无人机!MIT硬核研究:AI让你的麒麟臂变遥控器

2020-04-30 09:42 性质:转载 作者:智东西 来源:智东西
免责声明:无人机网(www.youuav.com)尊重合法版权,反对侵权盗版。(凡是我网所转载之文章,文中所有文字内容和图片视频之知识产权均系原作者和机构所有。文章内容观点,与本网无关。如有需要删除,敬请来电商榷!)

论文指出,使用肌电信号传感器有几个好处:

首先,降低了模型的复杂性。不需要照相机等动作捕捉设备,设备更轻巧;

其次,排除了遮挡、环境噪音等因素的干扰;

另外,肌肉信号能够反映出肉眼观测不到的运动状态(比如关节僵硬),有助于提升人机交互系统的灵活性。

▲“行为控制机器人(Conduct-a-Bot)”系统

二、用算法理解手势含义,实现即插即用

根据论文,让机器人理解手势指令有两个好处。首先,相比于连续运动,手势有助于增加系统的稳健性;其次,这种设计可以减少需要的电极数目,降低了模型的复杂性,增加了可部署性。

研究人员共设计了8种手势,分别是:手臂僵直、转动(分为顺时针转动和逆时针转动)、握拳(分为左手、右手、向上、向下)、手腕弯曲和伸展。

对于大多数手势引起的肌电信号,研究人员使用自适应在线聚类算法(Online clustering for adaptive thresholding)帮助机器人理解。

最初,所有的观察结果都储存在未知缓冲区。几秒钟后,高斯混合模型(GMMs,Gaussian Mixture Models)会对数据流分类,并将其添加到相应的滚动缓冲区中。

相比于离线训练方法,自适应在线聚类算法不储存所有的历史数据,不需要大量的校准、训练过程,可以做到即插即用。高斯混合模型(GMMs,Gaussian Mixture Models)会持续更新,聚类数据流并创建自适应阈值。这样,系统就可以适应不同用户的使用习惯。

对于那些很难用自适应阈值来描述的手势(在上、下、左、右四个方向上的握拳动作),研究人员用一个神经网络来帮助系统理解。这个神经网络用过去收集的一些受试者数据进行训练。

通过这两种方法,最终每个集群的训练池中都包含至少25%的手势。使用固定的覆盖率有助于保持原有的手势分类。

三、测试1200次,分类器识别准确率达97.6%

在测试阶段,研究人员按照这样的顺序给出指令:转动,手臂僵直,向上、下、右握拳,向左握拳。分类器优先按照最近0.2s内检测到的手势做出反应,其次按照根据肌电信号预测到的运动意图做出反应。

研究人员安排6名参与者做出1200次命令手势,以此评估分类器的性能和界面效率。根据统计结果,分类器对手势动作的识别准确率达到97.6%。

▲分类器分类准确率

网友评论
文明上网,理性发言,拒绝广告

相关资讯

热点资讯
推荐图文

关注官方微信

手机扫码看新闻