TOP2 揭秘以mega16l为核心的无人机充放电电路
小型旋翼机器人是以模型直升机为载体, 装备上传感器单元, 控制单元和伺服机构等装置以实现自主飞行。而为了提高飞机的安全性, 需要设计一套设备监测系统, 实时的监测飞机的姿态信息, 机载设备的状况以及电源的情况等。该平台所使用的电源是两节锂电池串联组成的电池组, 利用锂离子电池的充放电特性, 设计了一套以mega16l 为核心的充放电管理系统。锂电池具有体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点, 与镍镉电池、镍氢电池不太一样的是必须考虑充电、放电时的安全性,以防止特性劣化。因此在系统运行过程中, 为了保护锂电池的安全, 设计了一套欠压保护电路, 以防止电源管理系统因过用而发生电池特性和耐久性特性劣化。
电源管理系统总体框架
无人机电源管理系统是飞机实现自主飞行的重要组成部分, 其大致框架如图1 所示。在该系统中, 利用AXI 公司生产的2212/ 34 型号发电机将动能转换为220V 交流电, 再经过整流稳压后输出11.6V 的直流电压, 可由该输出电压为两节锂电池充电。电源管理系统的控制器是meg a161单片机, 该控制器通过检测两节锂电池的电压大小从而控制继电器开关来对电池进行充放电管理。
图1 电源管理系统框架
控制器采集到电源系统中的信息后, 通过无线传输设备将该数据实时传输给地面。地面监控平台还可以发送一些指令给mega16l, 通过控制继电器开关来控制电池充放电, 从而实现监测和控制飞机的目的。机上电源模块由两节英特曼电池有限公司生产的锂电池组成, 电池组电量充足时电压为8?? 4V.电池的荷电量与整个供电系统的可靠性密切相关, 电池剩余电量越多, 系统的可靠性越高, 因此飞行时能实时获得电池的剩余电量, 这将大大提高飞机的可靠性。
电源监控系统的实现
直升机能顺利完成飞行任务, 充足的电源供应不可或缺,由锂电池的特性可知, 在过度放电的情况下, 电解液因分解而导致电池特性劣化并造成充电次数降低。因此为了保护电池的安全, 电源系统在给控制系统供电前要经过欠压保护模块和稳压模块。为了预测电源系统中剩余的电量, 这里采用检测电源系统电压的方法, 在测得系统的电源电压后, 查找由放电曲线建立的数据库, 就能估计出电源系统中所剩余的电量。
单片机所需要的电源电压是2. 7 ~ 5.5V, 因此可为meg a16l 设计外部基准电压为2.5V, 该基准稳压电路如图2所示。所以系统要检测电池的电压, 需要将电池用电阻进行分压且最大分得的电压值不能超过2.5V.控制器测得的电压值乘上电压分压缩小的倍数后, 就能得到电源系统中的实时电压。时刻监测锂电池的用电情况, 防止电池过用现象出现, 就能达到有效使用电池容量和延长寿命的目的。
图2 基准电压电路
直流无刷电机电路
无刷直流电机是由电动机主体和驱动器组成, 是一种典型的机电一体化产品。直流无刷电机与一般直流电机具有相同的工作原理和应用特性, 而其组成是不一样的, 除了电机本身外, 前者还多一个换向电路, 直流无刷电动机的电机本身是机电能量转换部分, 它除了电机电枢、永磁励磁两部分外, 还带有传感器。该发电机的部分AC-DC 电路如图3 所示。
图3 无刷电机AC-DC 电路
充电电路
锂离子电池的充电特性和镍镉、镍氢电池的充电特性有所不同, 锂离子电池在充电时, 电池电压缓慢上升, 充电电流逐渐减小, 当电压达到4.2V 左右时, 电压基本不变, 充电电流继续减小。因此对于改型充电器可先用先恒流后恒压充电方式进行充电, 具体充电电路如图4 所示。该电路选用LM2575($0.9360)ADJ 组成斩波式开关稳压器, 最大充电电流为1A.
图4 高效开关型恒流/ 恒压充电器部分电路
该电路工作原理如下: 当电池接入充电器后, 该电路输出恒定电流, 对电池充电。该充电器的恒流控制部分由双运放LM358($0.0737) 的一半、增益设定电阻R3 和R4 、电流取样电阻R5 和1. 23V 反馈基准电压源组成。刚接入电池后, 运放LM358 输出低电平, 开关稳压器LM2575-ADJ 输出电压高, 电池开始充电。当充电电流上升到1A 时, 取样电阻R5 (50m 欧) 两端压降达到50mV, 该电压经过增益为25 的运放放大后, 输出1.23V 电压, 该电压加到LM2575 的反馈端, 稳定反馈电路。当电池电压达到8.4V 后,LM3420($0.9940) 开始控制LM2575ADJ 的反馈脚。LM3420 使充电器转入到恒压充电过程, 电池两端电压稳定在8?? 4V.R6 、R7 和C3 组成补偿网络, 保证充电器在恒流/ 恒压状态下稳定工作。若输入电源电压中断, 二极管D2 和运放LM358 中的PNP 输入级反向偏置, 从而使电池和充电电路隔离, 保证电池不会通过充电电路放电。当充电转入恒压充电状态时, 二极管D3 反向偏置, 因此运放中不会产生灌电流。
TOP3 ATmega2560($10.4500)无人机摇杆微控制器设计方案
电源欠压保护
电源欠压保护由锂电池的电池放电特性易知, 当电池处于3.5V 时, 此时电池电量即将用完, 应及时给电池充电, 否则电池电压将急剧下降直至电池损坏。于是设计了一套欠压保护电路如图5 所示, 利用电阻分压所得和由TL431($0.0625) 设计的基准电压比较, 将比较结果送人LM324($0.0900) 放大电路进而触发由三极管构成的开关系统, 从而控制负载回路的通阻。试验证明, 当系统电压达到临界危险电压7V 时, 系统的输出电流仅为4mA, 从而防止了系统锂电池过度放电现象的产生。
图5 欠压保护电路
由于锂离子电池能量密度高, 因此难以确保电池的安全性。在过度充电状态下, 电池温度上升后能量将过剩, 于是电解液分解而产生气体, 因内压上升而发生自燃或破裂的危险;反之, 在过度放电状态下, 电解液因分解导致电池特性及耐久性劣化, 从而降低可充电次数。该充电电路和本管理系统能有效的防治锂电池的过充和过用, 从而确保了电池的安全, 提高锂电池的使用寿命。
本文设计了一套UAV 电源管理系统, 该系统具有自动控制充放电管理, 实时监测电池电压等功能。该系统已经经过调试和试验验证了其可行性, 但是为了保证飞机安全, 还要做更多的试验以保证无人机自主飞行的安全和稳定。除此之外, 高低频滤波, 电池电量预测等也是重要的方向, 需要深入的研究。现今, 锂电池的使用范围越来越广, 其价格也相对适中,如果掌握先进的科学的使用方法, 让锂电池发挥应有的最大效用, 将会节省大量的资源和财富。
解读ATmega2560无人机摇杆微控制器设计方案
随着无人机正在成为新的经济增长点和国民收入水平的提高,近年来在高校和民间都得到了更多的关注。无人机是无人驾驶飞机的简称,是利用无线电遥控(含远程驾驶)、预设程序控制和(或)基于机载传感器自主飞行的可重复使用不载人飞机。目前用无线电遥控的无人机大部分使用JR或者Futaba公司出品的专用遥控器,这些遥控器优点是手感好,方便携带,但是价格高昂,通道数较少,难以满足无人机执行任务时需要较多通道数的要求。少部分使用PC作为控制平台,使用了飞行摇杆作为控制器,能实现更专业的功能,通道数也多,但是携带不方便,需要携带手提电脑或者PC到外场调试,还必须考虑电池续航问题,造价也比较高昂,且需要专业的计算机软件知识进行编程。
为解决上述不便,本人提出了一种基于Arduino的无人机控制器设计方案。Arduino是2005年1月由米兰交互设计学院的两位教师David Cuartielles和Massimo Banzi联合创建,是一块基于开放原始代码的Simple I/O平台.Arduino具有类似java、C语言的开发环境,将AVR单片机相关的一些寄存器参数设置等都函数化了,即使不太了解 AVR单片机的朋友也能轻松上手,设计出各种实用的电路开发系统,是一款价格低廉、易于开发做应用的电子平台。Arduino包括硬件和软件在内的整个平台是完全开源的。该方案由于采用Arduino平台,能快速开发出用较低成本的飞行摇杆来进行操纵航模,体验真实飞行的感觉。由于接口较多,可以实现高达 20通道以上,能执行各种扩展任务,且不需要携带电脑。
系统原理与架构设计
系统框图如图1所示,分为两大部分,分别是地面控制部分和控制执行部分。地面控制部分是由单片机读取飞行遥杆的数据,即可获得飞行摇杆各个通道的即时电压,通过模式转换后,得到各个通道的值。将上述值经过编码后通过无线数传模块发送出去。
空中指令执行部分:
由空中无线数传接收到信号后将指令发送到单片机,单片机将指令解析,并转换为飞控系统常用的PPM信号,该PPM信号可以直接驱动飞控系统做出响应动作,从而控制无人机。
模块原理、设计与制作
1.摇杆信号获取原理
要得到飞行摇杆当前的杆量,一个方法是通过摇杆的usb接口读取,由于各个厂家的通讯协议都不兼容,有些还必须获得授权,实现起来比较麻烦。另一个方法是直接获取摇杆的电位器值。实际上现在市面上的摇杆除了非常高端的摇杆用了霍尔传感,大部分都采用了普通的电位器,按照可变电阻来读取即可。本模块采用市场上常见的赛钛客FLY5飞行摇杆,拆开来外壳,所有电位器都是用3P的白色连接插座和电路板连接的,XYZ三轴用来控制飞机姿态(升降、副翼和方向),油门由拉杆控制,苦力帽可以用来控制fpv摄像头云台,还有其他的按键可以映射为其他通道,例如空中投掷物体,自动回家,切换飞行模式等。
2.杆量解析处理模块
我们采用的单片机系统采用了ArduinoM E G A 2 5 6 0 开发板。该开发板是一块以ATmega2560为核心的微控制器开发板,本身具有54组数字I/O其中14组可做PWM输出),16组模数转换输入端,4 组串口,使用16MHz的晶振。读取摇杆的XYZ轴的电阻值,只需将电位器的电源和地接在电调输出的5v和地上,信号线接在Arduino板的模拟输入口上,由于Arduino的AD读取精度最高是10位,在程序里将电阻值映射成0到1023的数值,FLY5飞行摇杆的分辨率大概在800~900左右。飞行摇杆的电位器是线性的,反应较为灵敏的。实际测试中摇杆回中后,和打到最大和最小的地方,数据会有一些波动和噪点,采用卡尔曼滤波算法进行处理,可以获得平滑的曲线。
2022-01-07 10:39
2021-10-24 17:27
2021-10-23 11:21
2021-09-19 17:29
2021-09-19 17:27
2021-03-10 07:46
2020-12-31 14:25
2020-12-28 18:24
2020-12-15 11:41
2020-12-11 10:58